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ABSTRACT 

The recent growth of machine learning and artificial intelligence technologies provides opportunities for 
leveraging data-driven algorithms to address the problems of diagnostics and prognostics in the nuclear 
power industry. The use of machine learning and other statistical methods as prognostic models is of 
particular interest in the nuclear industry to accurately predict future equipment or plant state given a set 
of measurements. Such predictive capability will enable predictive assessment of component condition 
and remaining life and allow for condition-based predictive maintenance. The resulting optimization of 
maintenance scheduling and reduction in unnecessary maintenance activities will lower overall 
maintenance costs and improve the economics of nuclear power. This report discusses the various aspects 
of data processing and model development that are likely to influence the performance of prognostic 
models. Data from a boiling-water reactor was used to evaluate several prognostic models to identify key 
considerations for developing such models to predict data-driven plant state and equipment degradation 
condition. Preliminary results indicate the need for data sets that are relevant to the problem at hand and 
contain signatures that may be correlated to the prediction problem. Assuming such data exist, 
development of prognostic models using data-driven methods requires an understanding of the various 
sources of influence on the prediction accuracy (such as the model architecture, data preprocessing 
approaches, and potentially external factors influencing the equipment or plant system under assessment). 
Ongoing research is evaluating these factors in greater detail and examining techniques for calculating 
prediction uncertainty bounds. 

1. INTRODUCTION 

Nuclear plant sites collect and store large volumes of data from equipment and systems at different 
temporal and spatial scales. These data typically include plant process parameters, maintenance records, 
technical logs, online monitoring data, and equipment failure data. The data may be collected using 
handheld instrumentation at irregular time intervals, or it may be streamed and archived on the plant 
computer. Structured methods and associated tools must be developed to analyze these data to provide 
actionable information on the current and future state of critical plant equipment. If such diagnostic and 
prognostic (predictive) insights into the state of the equipment were made available, then they could be 
used to drive maintenance decisions to improve equipment availability and reliability. However, the 
potentially unstructured nature of the data challenges the ability to develop scalable and reliable methods 
for data analysis. 
 
The recent advancements in machine learning (ML) and artificial intelligence (AI) technologies provide 
opportunities for leveraging data-driven algorithms to address the problems of diagnostics and 
prognostics in the nuclear power industry. Of particular interest is the development of generalizable 
prognostic methods that can accurately predict future equipment state given a set of measurements 
correlated to the current state of the equipment. Embedded in this problem is the ability to assess the 
current state of the equipment based on these measurements, as well as the need to develop a suitable 
model or models to estimate the change in equipment condition over a prescribed time horizon. The 
resulting estimate of the equipment’s remaining useful life (RUL) can improve overall plant performance 
and reduce maintenance costs through optimization of maintenance activities. 
 
While many approaches to prognostics have been described in the literature, there remains a need for 
objectively assessing prognostic models, especially those using ML, based on data from operating plants. 
An associated need is the development of a formal methodology for using and integrating these 
techniques into the nuclear industry maintenance practices.  
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1.1 SCOPE OF THIS REPORT  

This report examines the challenges associated with developing and assessing prognostic models, 
especially those using common ML techniques, as a step towards developing the formal methodology for 
stakeholder use and integration.   
 
The overall goal of this project is to develop and demonstrate predictive maintenance using online 
monitoring of critical systems in the balance of plant (BOP) of nuclear power plants (NPP). This report 
focuses on prognostic models, which are one of the key technologies for achieving this goal. The specific 
objectives of the work described in this report are to apply and evaluate ML algorithms for prognosis of 
equipment health and performance using relevant metrics. As necessary, this research defines the metrics 
to be used in the evaluation that are relevant to nuclear plant maintenance requirements.  
 
This report is the most recent in a series of documents examining online monitoring, application of 
advanced sensor technologies, and development of diagnostic and prognostic models for critical BOP 
equipment in NPP [1-4]. Previous efforts assessed the application of wireless technologies in NPPs which 
included evaluating potential wireless communication networks [4]; technical and economic evaluation of 
the wireless network that can support different communication protocols [2, 3]; and an evaluation of 
vibration sensors that can enable wireless data transfer in nuclear plants [1].    

While vibration data are useful for equipment condition monitoring and are used in operating plants for 
assessing condition of BOP equipment, limitations in the data sets available to the project team required 
the research to focus on using plant operational data for assessing prognostic models. Therefore, this 
analysis used data from the condensate and feedwater systems in a boiling water reactor to build 
prognostics models.  

1.2 ORGANIZATION OF THIS REPORT  

Section 2 discusses prognostics models—including the problem formulation, classes of models, and the 
selected models for this study—and it provides an overview of data preprocessing needs. Section 3 
discusses preliminary results and associated findings, and Section 4 summarizes the report and outlines 
ongoing and planned future work. 
 

2. PROGNOSTIC MODELS 

2.1 BACKGROUND 

The report by Meyer et al. [5] discusses the requirements for a prognostic health management system for 
advanced small modular reactors and documents the needs to address technical gaps identified through a 
gap analysis effort. The requirements documented therein were derived from a number of application-
specific drivers such as reactor design, operations and maintenance concepts, materials, environmental 
conditions, and other factors; these requirements were generally focused on passive components. 
However, a more recent review appears to indicate that many of the research needs identified in Meyer’s 
work are applicable to other reactor concepts and other classes of components [6].  
 
Previous studies have identified prognostic models as a key technical need that can integrate data from 
multiple sensors for robust prediction of remaining life, uncertainty quantification for the prognostic 
result, and lifecycle prognostics models. Most of the analytics research that has been performed to 
develop diagnostic and prognostic estimates in the nuclear industry has used data from a single sensor 
type. However, correlation techniques have been developed for diagnostic and prognostic estimates based 
on interaction between time-domain and frequency-domain features [7]. In recent years, research has been 
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performed to develop diagnostic and prognostic estimates by integrating sensor and maintenance data [8, 
9]. In addition, analytics research to date in the nuclear industry has not taken into account relevant 
information about the asset such as age, maintenance history, mode of operation, level of maintenance 
performed, and whether the performed maintenance activities returned the asset to a like-new state or to a 
more intermediate state of health.  
 
Prognostic or predictive models, as the names indicate, are intended to predict the value of a variable 
given one or more input parameters. While the terminology may be generally applied to any model that 
relates input and output variables, in this report, the definition of prognostic models is restricted to models 
that (1) use time-series data as inputs, and (2) predict the value of the output variable at some time in the 
future. In all cases, data from multiple sensors are assumed to be available as model inputs, allowing the 
model to implicitly integrate data from multiple sensors for robust predictions.   
 
The prediction time horizon in such models is usually fixed and implicit (i.e., not an explicit input to the 
model). The input time-series may be the raw measurements that have  not been processed in any manner 
(to enhance the signal-to-noise ratio, for example), or they may be features extracted from the 
measurements, such as the principal components of the measurements.  
 
Development of a prognostic model begins with defining the output measure to be predicted. This could 
be the generated output power of a nuclear power plant or the length of a crack in a structural material. 
The next step is selection of the prognostic parameters, which are relevant features from the data that are 
somehow related to or useful for predicting the output measure. The next step is the selection of the 
model form, after which the model parameter estimation, testing, and validation can proceed. In general, 
the selection of a model is informed by the type of data available: labelled vs. unlabeled data, large vs. 
small sample size, type of correlation between the prognostic parameters, etc.  

2.2 PROBLEM FORMULATION 

This research was initiated to develop prognostic models that are useful for RUL prediction for a 
component of a subsystem. The RUL is defined as the time remaining till the estimated (predicted) 
condition of the plant asset becomes functionally unacceptable, with the condition estimate computed by 
the prognostic model based on data from the asset. The problem of RUL prediction assumes that the 
component or subsystem of interest degrades over the course of operations. The time remaining before the 
component or subsystem is unable to meet its functional requirements must be determined. One specific 
approach to formulating the problem is as follows.  
 
Let 𝐱(𝑡) = [𝑥ଵ(𝑡), 𝑥ଶ(𝑡), … 𝑥௜(𝑡), … , 𝑥ே(𝑡)] be the vector of measurements from N sensors. Furthermore, 
let 𝑦௝(𝑡) = 𝑓௝൫𝐱(𝑡)൯, 𝑗 = 1,2,… ,𝑀 be a set of 𝑀 ≤ 𝑁 prognostic indicators computed from the N 
measurements using a known set of functions 𝑓௝(∙). Assume that a prognostic model 𝑔(∙, Θ) parametrized 
by  is available such that the sequence of prognostic indicators 𝐲(𝑡) = [𝑦ଵ(𝑡), 𝑦ଶ(𝑡), … 𝑦ெ(𝑡)] for 0 ≤
𝑡 ≤ 𝑡௞ may be used to predict the value of a health index 𝐻(𝑡) for 𝑡 > 𝑡௞: 
 
 𝐻෡(𝑡) = 𝑔([𝐲(𝑡଴), 𝐲(𝑡ଵ),… 𝐲(𝑡௞)], Θ) (1) 
 
where 𝐻෡(𝑡) indicates the estimate of 𝐻(𝑡). The RUL is then simply the time interval between 𝑡௞ and the 
time at which the health index is no longer acceptable. 
  
This simple formulation, while acceptable for many problems, may be unacceptable for nuclear plant 
equipment health prognostics, as it does not include a formal mechanism for quantifying the uncertainty 
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in the prediction. Several other formulations that are generalizations of Eq. (1) are available to estimate 
the prediction uncertainty [10], but the formulation in Eq. (1) is sufficient for the present assessment.  
 
Several assumptions are embedded in Eq. (1), including the fact that RUL prediction will require the 
ability to compute prognostic indicators from the measurements (data) that are sensitive to the amount 
and type of degradation in the component or subsystem health.  
 
However, it was determined that the available data from an operating plant (see Section 3.1 for details) 
did not have any examples of equipment degradation or failure that were encapsulated by the 
measurements. As a result, the decision was made to focus initially on the simpler problem of predicting 
plant conditions (i.e., one or more measured plant process variables) at future time instants based on past 
measurements of plant process parameters. Note that prediction of one or more measured quantities from 
plant process parameters can also be formulated using the formulation highlighted in Eq. (1), with 𝐻(𝑡) 
replaced by the relevant measurements 𝑥௜(𝑡) or the prognostic indicators 𝑦௝(𝑡) in Eq. (1).  
 
Within the context of predicting plant conditions, two specific sub-problems may be identified. The first 
of these is the prediction of plant output (generated power) at a given time from measurements of plant 
process parameters such as feedwater flow and temperature and equipment operation parameters such as 
motor current and pump differential pressure at that time or at previous time instants. The second sub-
problem is one of predicting the plant process parameters or equipment operation parameters given the 
data from those parameters at previous time instants.  
 
Each of the two plant condition prediction scenarios may be formulated using a similar setup as that used 
in Eq. (1) and are used in the evaluations in this study to elicit insights into model performance. However, 
the second sub-problem (plant/equipment parameter prediction) has similar characteristics to degradation 
prognostics in that the prognostic model represents the change in the quantity of interest over time.  

2.3 PROGNOSTIC MODELS - CATEGORIES 

In general, prognostic models can be divided into three subcategories: physics-based models, data-driven 
models, and hybrid models. 
 
Physics-based prognostic models attempt to predict the future value of the output variable using measured 
data in combination with a physics model. Such a model might be, for instance, based on a set of partial 
differential equations or ordinary differential equations that encode the first-principles relationship 
between the inputs and outputs  [11, 12]. An example of a physics-based prognostic model is a crack 
growth model such as Paris’ law to predict fatigue crack length as a function of time to the number of 
fatigue cycles and the stress intensity factor [13, 14].  
 
Physics-based models typically produce high-accuracy results and require less data for tuning when the 
mechanism is well known [15]. However, physics-based models are usually computationally expensive, 
especially when applied to system-level prognostic problems or when multiple degradation modes need to 
be represented. A classic example of this is degradation prognostics, in which the problem is one of 
predicting the remaining life of a system that can fail from one of multiple degradation modes. Without a 
priori information on the specific degradation mode, a physics-based prognostic model can be difficult 
and expensive to formulate and solve. Even for a simple model, many assumptions and estimations are 
made during the creation of the model, leading to suspicions about physical model adequacy [16].  
 
Data-driven prognostic models estimate the value of the output variable through observed data only and 
do not incorporate first-principles information about the relationship between the input and the output. 
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Data-driven methods rely on trends within the data to construct mathematical models to predict future 
states of the system.  
 
The performance of data-driven methods, including statistical and ML methods, are dependent on the 
amount and quality of available data that may be used to infer the model parameters [16]. The key 
difference between statistical and ML methods is the focus of ML methods on prediction (using models to 
estimate the output for new input data) instead of inferencing (using models to understand the data 
generation process). While models using machine learning are valuable for learning hidden higher order 
relationships from data, the performance of these methods is sensitive to the model’s structure (number 
and size of layers, connectivity between layers), learning algorithm (e.g., Levenberg-Marquardt, Bayesian 
regularization, and gradient-based methods [17]) and the initial values of the model parameters (weights).  
 
Data-driven methods are beneficial because they can be deployed on large, complex systems; every 
mechanism or interaction does not need to be known to produce acceptable results. Data-driven methods 
are easy to implement with a low cost of creation [18]. Once the data have been collected, models can be 
developed extremely quickly as compared to physics-based models. But data-driven models have issues 
as well. They require large amounts of data covering a wide range of conditions. The outcomes produced 
usually have a high confidence only in the domain spanned by the training data. Any predictions made 
outside this domain will lead to extrapolation and potentially non-physical results [18]. For their use in 
the creation of degradation models, run-to-failure data are required. This type of data may not exist for 
high-priority or new systems. Determination of an appropriate failure threshold can also be difficult, even 
when run-to-failure data exist. 
 
Physics-based and data-driven methods each have their advantages and disadvantages, which hybrid 
methods attempt to combine for the best results. This area of research has not matured, but it is growing 
[13, 19]. Many of these models are application specific, with one model predicting the health state while 
the other predicts the RUL. Another methodology attempted to incorporate both model types into the 
RUL forecasting stage. Eker et al. [20] used a physics-based model to make near-term prediction and then 
used data-driven methods to compute long-term forecasting. 
 
Appropriate model selection depends on knowledge of the system behavior and available data. While 
physics-based models may be available in some instances, the vast majority of applications tend to focus 
on data-driven methods because of the complexity of the physics models and the relative ease of access to 
data from the system of interest. Within the category of data-driven models, factors dictating model 
selection include: 
 

 Objective of the prognostics (anomaly detection vs. predicting health state), which impacts the 
problem formulation and the associated model selection (classification vs prediction) 

 Amount of available data  
 Labelled data availability. If labelled data that associate the data with the system state or 

condition are available, then supervised learning methods are an option and may dictate the type 
of model chosen. Otherwise, unsupervised methods are preferred and correspondingly limit the 
types of models  

 Type of data (time-series vs. state space, run-to-failure data, etc.) 
 Statistical characteristics of the system and available data (for example, stationarity of the 

system), which will affect the data processing stages and the model selection  

2.4 PROGNOSTIC MODELS SELECTION  

As indicated above, there are several options for prognostic model selection, and the specific choice is 
dependent on the objective of the prognostics. For the problem of RUL estimation, for instance, model 
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selection is largely based on knowledge of the system and potential modes of degradation. This approach 
will determine whether a physics-based, data-driven, or hybrid model is the best option. If the objective is 
to predict future plant conditions (i.e., future values of select measurements from a plant), then model 
selection will depend on the level of available knowledge and data on the system behavior.  
 
While physics-based models are a possibility for predicting future values of select measurements, model 
complexity may be prohibitive when dealing with a complex system such as the feedwater and 
condensate system. A data-driven approach reduces the complexity of the model development and may be 
useful in identifying anomalous behavior in the system performance [16] that may be an early indicator of 
degradation in critical components. Based on the simplicity of developing and applying data-driven 
models and the potential for applying recent advances in machine learning for this purpose, three data-
driven models were selected in this study: long short-term memory (LSTM) neural network, nonlinear 
autoregressive (NAR) network, and support vector regression. These three models are distinguished by 
their ability to work with time-series data, are relatively simple to develop and apply, and appear to be 
able to represent predictive relationships between time-series over different time horizons [16]. Note that 
other modeling options are also available [21-23] and may be appropriate for other prognostic 
applications. 
 
The LSTM network [24] is a type of recurrent neural network (RNN) that includes unique memory cells 
specifically developed to learn and encode long-term relationships between inputs and outputs. This is in 
contrast to classical RNNs that, while utilizing temporal information to develop the relationship between 
previous inputs to inform the current output, are challenged with identifying and encoding longer term 
relationships present in the data [25]. In the LSTM, the memory cell stores the state within the network 
that interacts with the current input. The stored state is updated as new inputs are available; a “forget” 
gate determines which information to forget from the previous memory cell state. The output from the 
forget gate is then transferred as a hidden output to inform the memory cell during the next time step. A 
number of activation functions may be used as part of the LSTM cell as part of the internal state 
computation and update [26]. A detailed guide to LSTM is provided by Greff et al. [27].  
 
A NAR neural network is a dynamic recurrent network. A NAR network is a more traditional RNN that 
consists of a single layer, while the LSTM is a more complex RNN consisting of multiple layers, each 
serving a different function. Dogan used both NAR and LSTM models to predict network traffic flow and 
showed that the LSTM outperformed the NAR model under most circumstances [25]. This model makes 
predictions based on historical values and can be used to forecast nonlinear time series [28]. The NAR 
model is trained in an open-loop style using backpropagation to update the values within the hidden layer. 
This model is trained to make one-step-ahead predictions, but the loop can be closed to make further 
predictions. To close the loop, the NAR network is given initial values, and the output is directly piped 
back into the inputs. The success of the NAR model depends on the architecture of the model and the 
selection of the inputs. Various combinations of hidden nodes, delays, and inputs should be tested to 
ensure the best fit. Increasing the number of hidden neurons can increase the model’s ability to fit the 
training data. Too many hidden neurons, however, will increase training time and can overfit the training 
data, leading to poor generalization.  
 
Support vector regression (SVR) is fundamentally a kernel-based regression model based on the core 
concept of support vectors; this model can be used for classification or regression [29]. SVR has two 
primary components: a kernel function and an optimization routine. SVR first transforms the input data, , 
not linearly separable in the input data space, into a higher dimension feature space  using a kernel 
function [30]. The optimization routine seeks to minimize generalization error, which is the sum of the 
training error and the confidence level. The solution depends only on a subset of training data points 
called the support vectors [31]. SVR is notably different from other regression techniques because 
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training data within a tolerance do not penalize the loss function being optimized. SVR is noted for its 
accuracy, regularization, and generalization abilities [18].  
 

2.5 DATA PREPROCESSING NEEDS FOR PROGNOSTIC MODELING 

2.5.1 Prognostic Indicators 

A prognostic indicator can be anything used to measure or infer the health of a component or system of 
interest. Passive components such as the containment or welds rely on a variety of nondestructive 
evaluation (NDE) techniques to measure defects, thermal fatigue, creep, etc. Active components such as 
motors, turbines, and heaters can be measured directly through vibration, acoustics, temperature, 
pressures, current, flow, etc. Raw instrument signals can also be combined to produce prognostic 
indicators. The optimal prognostic indicator depends on the system, the outcome being predicted, and the 
available measurement signals. For example, useful signals for an induction motor could include current, 
vibration, and bearing temperatures [32].  

2.5.2 Data Preprocessing 

Rarely are the raw measurement signals the optimal choice for a prognostic indicator. Raw data should be 
processed and cleaned to improve prognostic performance. Raw data can be subject to outliers, sensor and 
process noise, missing information, and more. These types of errors can be filtered and replaced. Data 
processing includes feature identification, normalization, and selection [33].  

Feature selection is the process of choosing signals that aid in prognostic modeling while eliminating 
irrelevant or redundant signals. Some measurement signals such as vibration are very rich in information. 
In these cases, it advantageous to select a feature from the data rather than using the raw signal itself. 
Features such as root mean square, kurtosis, or an amplitude of a specific frequency peak may be more 
related to the output being predicted. The optimal feature is dependent on the system and the output being 
predicted. Multiple features should be tested when able. Principal component analysis (PCA) can be used 
to reduce the dimensionality of the feature space while retaining the variance contained within the data. 
Each of the principal components is orthogonal to one another, meaning they are uncorrelated [34]. By 
selecting principal components that cumulatively explain 95% of the variability in the data, the majority 
of the information is retained while the total number of inputs required for the model is reduced. 

Normalization is typically used to ensure that the models are sensitive to variations in the features of 
interest and not to the absolute values of the features. Normalization is usually performed in one of two 
ways. The first approach, which is referred to as standardization, scales the data to have a specific mean 
and variance. The second approach scales the data so that the data lie in a fixed range. Data are typically 
normalized prior to being used in neural networks, but this is rarely done in statistical models [33]. The 
LSTM can be sensitive to input scaling, so inputs should have a mean of 0 and a variance of 1. 

2.5.3 Evaluation Metrics 

Metrics have been developed to evaluate the potential performance of prognostic indicators. These 
metrics include monotonicity, trendability, and prognosability [35]. Monotonicity captures the overall 
positive or negative trend of the feature. When working with mechanical equipment, the major 
assumption is that degradation is cumulative as long as there is no repair or maintenance. A strongly 
monotonic signal can be useful for predicting continuous degradation. Trendability represents the 
underlying shape that the feature’s population exhibits and how well a function could fit that population. 
Prognosability measures how well the critical failure values are clustered, as well as the variance between 
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the initial and failure values. Tightly clustered failure values indicate that the failure threshold can be 
confidently defined. A large distance between initial and failure values can aid in the differentiation 
between a healthy or failing component. 
 
Evaluation metrics judge models based on their predictions. Each metric compares a different aspect of 
the prediction, so it is important to be consistent in the metric choice when comparing a model to others. 
The choice of which metric to use depends on how much information is available other than the model’s 
prediction. If the prediction is offline and the ground truth is known, then root mean square error (RMSE) 
or confidence interval (CI) should be used. The RMSE is a commonly used procedure to measure the 
average prediction error between the model prediction and ground truth. A smaller RMSE means a closer 
average prediction. Alternate metrics quantify prediction accuracy in terms of the maximum prediction 
error (Maximum Absolute Error or MAE) and residual standard error (RSE, which is a variant of RMSE 
adjusted for the number of prognostic indicators). A CI is a measure defining how often the RUL 
prediction was within a specified range around the actual RUL at the time of prediction. A narrower CI 
means that the RUL prediction is both accurate and concentrated [36]. Lei [36] also provides a detailed 
review of several other evaluation metrics, including alpha-lambda accuracy, prediction horizon, 
predictability, and others. It is important to note that these metrics may be applied for comparing models 
on the basis of their performance on a test data set. However, good accuracy (for instance, low RMSE) on 
a training or test data set is not necessarily indicative of good generalization performance (prediction 
performance on data not previously seen by the model). While such generalization performance is 
difficult to quantify, generalization error bounds may be computed in some cases [37, 38].  

2.6 LIMITATIONS 

It is important to note that none of the models described above have the inherent capability to estimate the 
uncertainty in the model predictions without substantial modifications. Such modifications have typically 
used Bayesian or Monte Carlo methods [10] to quantify the model prediction uncertainty. At this writing, 
the focus of this effort has been to assess prognostic model accuracy and to define the implications of 
varying the key parameters associated with the different models. Assessment of uncertainty quantification 
methods for prognosis will be addressed in the future.  
 
While prognostic model development is relatively straightforward if data are available, a challenge arises 
if new data become available and are expected to increase the accuracy and confidence in the model 
predictions if included in the model development process. Several options exist for model updating based 
on new data stream availability; these options vary from simple (retrain the entire model) to complex 
approaches that use evidence-based techniques to update the model parameters. In the work described 
here, the focus is on categorizing the data available and predicting future plant conditions using available 
data only. As new sensors and data streams become available, integration of data into prognostic models 
will be evaluated, with the leading candidate for this being a Bayesian approach. 
 

3. PRELIMINARY RESULTS 

This section provides an overview of the results achieved when applying the models described above for 
prognostics of plant state using data from an operational plant. As described above, the primary objective 
of this analysis is to assess the capabilities and limitations of these data-driven prognostic models relative 
to time-series prediction; that is, predicting future values of a time series given one or more time-series 
measurements from the past. This assessment requires the ability to quantify the necessary data handling 
and preprocessing needs, and the ability to determine the computational complexity associated with 
developing the models. Furthermore, the relative accuracy of the different models is important. These 
requirements are discussed in this section. 
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3.1 DATA DESCRIPTION 

The data used in this work to evaluate prognostic models was from the feedwater and condensate system 
(FWCS) of a BWR. The primary task of the FWCS is to supply clean, demineralized water to the reactor 
vessel at the correct temperature, pressure, and rate. The data set contains process data, as well as 
condition-based and preventive maintenance work orders for various components throughout this system.  
 
Available process data include variables such as the generator’s gross load and the average feedwater 
flows and data on temperatures and pressures at the condensers, feedwater pumps, condensate and 
condensate boost pumps, and motors for multiple pump trains. The data from the plant historian were 
downsampled to hourly intervals and provided by the plant. The available data set is for a five year period 
covering multiple complete refueling cycles: steady-state operation, ramp-downs (shutdown for 
refueling), and several derates of varying levels. The available data were unlabeled, so there was no 
indication of whether any portion of the data corresponds to equipment failure. Furthermore, the data did 
not have sufficient information to determine the cause of each derate. Discussions with the plant 
engineers indicated that most of the derates were caused by factors other than the FWCS (i.e., no FWCS 
component failures were seen during the time period corresponding to the data). Additional information, 
in the form of reports summarizing the plant performance and any known issues, were also provided to 
the project team. The timing of this information delivery made it difficult to analyze and correlate with 
the process variable data; therefore, this analysis will be included in subsequent project reports. 
 
For this report, the objective of the model was to predict plant conditions at one hour, one day (24 hours), 
and one week (168 hours) into the future. Each of the three model types was used as a way of comparing 
ML prognostic models (LSTM and NAR) against a statistical prognostic model (SVR). The available 
time series data from the process variables was cleaned (see Section 4.2), and the data from steady-state 
operations were separated from data corresponding to ramp-downs and derates. The available steady-state 
data were further partitioned into two groups: a training data set containing the first 80% of the steady-
state data, and a test data set containing the remaining 20%. The models were each built using the training 
data and were evaluated against the test data. Model performance was measured using prediction 
accuracy and computational complexity associated with deriving the model from the training data. 
 
It is worth noting that that the steady-state process variable values had differences (average plant output 
power differed by about 0.5% - 1%) from cycle to cycle. Preliminary analyses using the data from fuel 
cycles with similar plant power outputs to develop (train) the models demonstrated somewhat poor 
prognostic performance on the test data (other cycles), exhibiting a persistent bias in the predictions. This 
behavior is not inconsistent with the performance of these types of data-driven models, as their 
generalization errors tend to increase when based on data that are dissimilar to those used in the training. 
The 80/20 split in the data was chosen as a result to ensure sufficient diversity in the training data set and 
to eliminate an obvious source of bias in the predicted results. The 80/20 split included measurements 
from all fueling cycles. 
 
Although it was not the primary aim of the research, a limited analysis used all the data (steady-state and 
derates/ramp-down) in an attempt to assess the capability of these types of models to represent 
nonstationary behavior. Again, the available data were partitioned into training and test data using an 
80/20 split. Results from this limited analysis are discussed later in this section.  

3.2 DATA CLEANING AND PROCESSING 

Because of the varying states of operation, the data set was divided into four categories: steady state, 
refueling, derate, and trip. The steady state covered all instances when the reactor was above 90% of 
nominal full power. Although the power does fluctuate within this category, it is still covered within the 
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broadly labelled steady state. Refueling covers the period of time from the initial ramp-down through the 
refueling outage, with the ramp-down and subsequent startup representing non-steady–state operation. 
Derates contain all observations in which the reactor is operating between 5 and 90% nominal full power. 
Derates can occur due to operational, reliability, or environmental issues. The final category is trip, or 
scram, which is the emergency shutdown of the nuclear reactor. Trips are similar to derates in appearance, 
but instead of the gross load being reduced, the reactor is shutdown. 
 
The data were cleaned before being processed in models. The data cleaning process was intended to 
address instances of missing data and outliers and to separate out the data from steady-state and non-
steady–state conditions. Missing information was primarily noted for instances during which the 
component was offline. If the component was online but the data were not recorded due to an error in the 
sensor or data archiving process, then the missing values were interpolated using neighboring values. If 
the missing value corresponded to an inactive loop, then the component may have been taken offline, so 
the value was left as is. Daylight saving time was a minor inconvenience, as periods of time were 
“skipped” once per year. Time stamps were not duplicated when daylight saving time ended towards the 
end of the year. These time steps were filled as previous values. 
 
Potential outliers were selected based on values being at least four standard deviations away from the 
average, as shown in Figure 1. For many of the variables in the steady-state portion of the runs, data are 
heavily skewed in one direction or the other. When searching for potential outliers in the BOP average 
flow, roughly 1% of the data was beyond three standard deviations. After expanding the threshold to four 
standard deviations, the number of outliers was reduced to 0.3% of the total dataset, as seen below. Once 
an outlier was found, this value was corrected using a median filter. Median filtering uses a sliding 
window approach to replace values within the median of the window. The window size is important 
during this process, and in this case, a window size of 51 points (slightly over 2 days’ worth of data) was 
selected. For the purpose of anonymizing, the axes of the Figure 1 is normalized. 
 

  

Figure 1. Example of outliers identified in the average total feedwater flow measurement. The data range has 
been normalized so that the maximum value of the variable is 1, and the normalized horizontal axis 

represents the fraction of plant operation time.  
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Temperature data can contain seasonal variations and long trains of outliers, as seen in Figure 2). Median 
filtering was used to address these problems. Median filtering using a larger window size of 700 was 
chosen to account for the seasonal variations. 
 

 
Figure 2. Example of seasonal trends or other periodicities observed in temperature measurements 

(feedwater temperature). Again, the temperature is scaled to be between 0 and 1, and the  
horizontal axis represents the fraction of plant operation time. 

Subsequent to the data cleaning, the measurements were normalized (standardized) to zero mean and unit 
standard deviation (data distribution scaled to a standard normal distribution). 

3.3 PROGNOSTIC MODELING PERFORMANCE 

Each of the three models was used to estimate the prediction performance based on a subset of process 
variable measurements corresponding to the total feedwater flow and temperature measurements. To 
ensure a reasonable comparison between the modeling approaches, a subset of process variable 
measurements (feedwater flow, feedwater temperature, and feedpump/condensate boost pump operating 
characteristics) was used to build the models. This subset of data showed a high correlation with the 
generated load from the plant and was directly related to the equipment of interest for degradation 
detection. Model development and performance evaluation were performed using one of two methods. In 
the first method, the normalized data were used directly to build and evaluate the models. In the second 
method, PCA [34] was used to identify the largest principal components from the data. These constitute 
the components with the greatest explanatory power, with the remaining principal components more 
likely to be related to noise in the data. These data were used in the model development and evaluation. It 
is expected that the use of PCA will reduce the model complexity by reducing the size of the models and 
will enhance the robustness of the models by focusing on features that are more likely to be related to the 
system states of interest. A further benefit of the PCA approach is the de-correlation of the measurements 
by projecting the data along orthogonal principal axes; this is expected to improve the prediction 
accuracy. 
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3.3.1 Prognostic Model Results 

The prognostic model performance, especially for the ML  models, is expected to be sensitive to the 
model structure, parameters, and data used. To verify this, the LSTM and NAR models were trained with 
differing numbers of hidden layer neurons; performance was tracked through the time required to train the 
models (on a dual-core CPU system) and the root mean square error (RMSE) in the prediction. The 
RMSE values were estimated using the test data set only. The SVR models were used as a baseline for 
comparison of the other neural network-based models. In most cases, the models were applied to predict 
future values of one or more of the measurements. In a few instances, however, the models were applied 
to predict the generated output of the plant from the measurements. The input data streams were also 
varied, with some models using all measurements within the subset identified above, while others used 
only some of these measurements. Unless specified otherwise, all results were obtained using only the 
data from steady-state conditions.  
 
The initial analysis focused on predicting both plant power output and other sensor data over different 
prediction time horizons. Different model configurations and training data were used with the NAR 
model, yielding the results provided in Table 1. The highlighted rows in the table indicate the case in 
which the data split was 80/20, as discussed earlier (Section 3.1). For comparison, results are also given 
(rows without highlighting) from when the training data consisted of all data from refueling cycles with 
similar plant output on average, with data from other refueling cycles used as test data to evaluate 
prediction performance.  
 
The number of inputs indicates the number of principal components selected for the NAR model. Table 1 
shows that, in general, too many nodes can yield just as poor generalization as too few nodes. Increasing 
the number of inputs does not always increase the performance of the model. By using fewer PCs, the 
model sees less noise that is uncorrelated from the signals of interest. The results also indicate a dramatic 
reduction in the prediction error when using an 80-20 data split (highlighted rows). An examination of the 
data indicated a small but measurable and consistent change in the generated output between the refueling 
cycles corresponding to the test and training data. The result of this difference (likely due to an increase in 
the plant generation capacity in this cycle) was a systematic bias in the predictions. This bias was 
alleviated by introducing an 80-20 split in the training data, so that the training data consisted of parts 
from all fueling cycles. This initial result also highlighted the need to ensure the training data is 
representative when using prognostic models that learn from the data. 
 

Table 1. Summary of the NAR model performance under different combinations of nodes,  
delays, inputs, and training data. RMSE was averaged for all signals estimated. 

# of nodes # of delays # of inputs RMSE 
10 10 25 2.068 
10 2 25 2.110 
25 2 25 1.694 
35 2 25 0.881 
50 2 25 1.759 
35 2 78 2.310 
35 2 16 0.660 
35 2 13 0.460 
35 2 10 0.404 
35 2 16 1.711 
10 2 6 0.167 
12 2 6 0.087 
16 2 6 0.126 
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Figure 3(a) shows an example of the prediction results for the 12-node, 2-delay, 6-input NAR model 
using an 80/20 training/test data split, for three prediction horizons. The figure presents the normalized 
load (power generated) against time (normalized as a  fraction of plant operation time). Separate NAR 
models were used to predict one hour, one day, and one week ahead. Figure 3(b) shows similar results for 
the SVR model. This SVR had a linear kernel function and used default settings resulting in 857, 692, and 
146 support vectors, respectively. Parameter optimization will be necessary to optimize the number of 
support vectors and enhance the generalization ability of the SVR. For the LSTM models, the same 80/20 
split was used. The results summarized in Figure 4 (varying prediction time horizons for LSTM models 
with different numbers of hidden nodes) appear to show a decrease in prediction accuracy with an 
increasing prediction time horizon. However, the data indicate variation in this trend, with a potential 
increase in accuracy as the horizon increases to about a day before decreasing again. A comparison 
against SVR models using linear and Gaussian kernels are also shown in Figure 4.  
 
In the results presented in Figure 3 and Figure 4, the apparent increase in accuracy at the one-day 
prediction horizon as compared to the one-hour and one-week predictions was unexpected. This is likely a 
result of the data used in the training and testing and not a general finding on prediction accuracy as a 
function of prediction time horizon. Indeed, it would be expected that the prediction accuracy would be 
better when attempting to predict closer in time. The specific cause of the unexpected trend observed has 
not been determined, but likely causes include network size (for LSTM) and a fortuitous periodicity for 
small derates in which the 12 to 24-hour window helps the models avoid having to predict many derates 
using steady-state data, and vice versa. This latter potential cause is being investigated further to 
determine if this is an artifact of the sampling rates used to archive and provide the data.  
 
It is worth noting that with all models, performance degradation was seen if the output was routed back to 
the input to enable multiple time step prediction (i.e., using the predicted output at a time step to predict 
the output at the next time step), as a result of prediction error accumulating over time. Such a scenario 
might occur when a single model is operating in real time to obtain multiple-time horizon predictions.  
In contrast, the use of a separate model specifically trained to predict one day or one week in advance 
appears to provide better results.  
 

  
 (a) (b) 

Figure 3. Summary of predictions for the test set (steady-state operations) from  
(a) NAR model with 12 nodes, and (b) SVR model. Each plot shows the prediction  

performance for three different prediction time horizons. The horizontal axis is normalized as a fraction of 
plant operation time. 
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Figure 4. Comparison of RMSE of predictions for the test set (steady-state operations) from LSTM and SVR 
models as a function of the prediction horizon (number of time steps ahead of which the prediction is made). 

For each prediction horizon (1 hour, 12 hours, 1 day, and 1 week), the variation in RMSE for the LSTM 
models are due to models with different numbers of hidden layer nodes. 

The models were also used to predict the flow in a single reactor loop for three different prediction 
horizons. In Figure 5, the NAR prediction is compared against an SVR model (5903, 411, and 89 support 
vectors for the three prediction horizons, respectively). Again, the one-day prediction appears to 
outperform both the one-hour and one-week predictions. However, the NAR model in Figure 5 shows that 
a consistent bias developed halfway through the test. The cause of this deviation is currently unknown but 
is being investigated. The SVR outperformed the NAR model by roughly an order of magnitude for each 
prediction horizon. In Figure 6, similar results were seen when comparing the prediction performance for 
the reactor feedwater pump temperature of NAR and SVR models (19, 20, and 47 support vectors, for the 
three prediction horizons for SVR). A similar performance improvement is seen when comparing the 
LSTM and SVR models (Figure 7); the performance improvement is particularly significant at longer 
prediction time horizons. However, the prediction performance of the non-optimized SVR also varies as it 
is applied to predict different variables (Figure 11).  
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 (a) (b) 

Figure 5. Summary of flow predictions for three different prediction horizons for the test set (steady-state 
operations) from (a) 12-node NAR model, and (b) SVR model, as a function of a million gallons  

per minute for a fraction of plant operation time.  

   
 (a) (b) 

Figure 6. Summary of predictions for three different prediction horizons for the reactor feedwater pump 
temperature (steady-state operations) from (a) NAR model, and (b) SVR for a fraction of plant operation 

time. 
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Figure 7. Summary of average flow predictions for the test set (steady-state operations)  
from LSTM and SVR models as a function of the prediction time horizons. 

While the apparent performance advantage for the SVR could be due to the inherent advantages of the 
model itself, it is more likely that the performance gain is due to sub-optimal model structure for the NAR 
and LSTM models. The result appears to indicate a need for model structure optimization for LSTM and 
NAR models and likely for all machine-learned models, where model structure selection is a key part of 
model development.  
 
Figure 8 and Figure 9 show examples of the performance variation of LSTM as a function of the number 
of hidden layer nodes. In the case of data shown in Figure 9, the LSTM was trained with a single input 
corresponding to data from one sensor within a moving time window to predict the value from the same 
sensor at a future time instant (1 hour, 12 hours, 24 hours, or 1 week in the future). Figure 8 illustrates the 
more complex situation corresponding to prediction of gross load at a future time instant from a set of 
process measurements. In both instances, the variation is largely due to variation in accuracy at different 
prediction time horizons. As can be seen from these examples, the prediction accuracy is a complex 
function of the hidden layer size (larger hidden layers are not always better) and the prediction time 
horizon.  
 
Whereas the hidden layer size (number of LSTM cells) is related to the amount of history from which the 
LSTM network learns, often there is a limit beyond which increasing the size of the hidden layer brings 
diminishing returns. Unfortunately, there appears to be no simple way to identify this limit; nor is there a 
monotonic relationship between the number of hidden layer nodes and the performance of the network 
before this limit. There is also evidence in the literature that LSTMs do not scale well with data size, 
indicating that the use of LSTMs as prognostic models for predicting over a very long time series may be 
challenging.  
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Figure 8. Performance variation of LSTM with hidden layer size. The LSTM was trained to predict the gross 
load under steady-state conditions using previous measurements of process variables (flow, temperature, 

pressure). The variation in RMSE for each hidden layer size is due to the different prediction time  
horizons: higher RMSE usually correlates with longer prediction horizon in this instance.  

Similar model structure optimization can be performed for SVR by modifying the underlying kernel 
functions and the kernel bandwidth, as well as adjusting other algorithm parameters. An example of the 
performance obtained when using a different kernel function (Gaussian), along with optimizing the SVR 
model (number of support vectors, etc.), is shown in Figure 10. (For reference, the previous SVR results 
were obtained using linear kernels). 
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Figure 9. Performance variation of LSTM with hidden layer size. The LSTM was trained to predict the 
average flow under steady-state conditions using previous measurements of total flow. The variation in 
RMSE for each hidden layer size is due to the different prediction time horizons: higher RMSE usually  

correlates with longer prediction horizon in this instance. 

 

Figure 10. Prediction performance when using optimized Gaussian kernels in the SVR algorithm.  
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A related issue evident when analyzing Figure 3 through Figure 6 is the need to assess whether the 
information in the data allows for improved prediction results. This question was evaluated by applying 
the SVR model to predict the measurement from each sensor using only previous data from the same 
sensor. One SVR model per sensor was used, and the results are summarized in Figure 11 as the mean 
and standard deviation of the prediction RMSE across all sensors. The results are mixed, with the greatest 
variation in RMSE at intermediate time horizons indicating increased accuracy in some cases over the 
shorter prediction horizons. This reinforces the “fortuitous periodicity” theory in which not all data show 
the best prediction performance at intermediate prediction horizons, and it illustrates the need to quantify 
the prognosability of the available data as an important step prior to model building. The data in Figure 11 
are plotted on the same scales that were used in Figure 7; it can be readily seen that the overall RMSE in 
all instances is better than that from the LSTM, but that the LSTM approaches the SVR results at 
intermediate prediction horizons. This result further indicates a potential need for model structure 
optimization for LSTM and SVR models.  
 

 
Figure 11. Summary of SVR prediction accuracy for single variable prediction, computed across multiple 

variables, for the test set (steady-state operations) as a function of the prediction time horizons. 

 
Finally, Figure 12 illustrates the prediction performance when attempting to train an LSTM model to 
predict under both steady-state and transient conditions. In this case, the models were trained to predict 
the power output from the reactor one time step in advance using the feedwater flow values. Figure 12 
shows a portion of the time window over which prediction was attempted, highlighting both the steady 
state and derates. While this is a hybrid of the two plant condition prognostics sub-problems presented 
earlier, nonetheless, the results are useful for drawing somewhat broad conclusions about the performance 
of the algorithm. Specifically, as evident from the performance, the model appears to be capable of 
learning what appears to be a relatively straightforward relationship between the input and output 
variables, even if separated in time. The relatively stable performance in steady state regions is probably a 
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result of the fact that the reactor power (or any process variable value) one time step ahead is not likely to 
be very different from its values at the present instant. The predictions are also seen to track derates and 
were observed to also track the ramp down prior to a refueling outage. This is also likely due to the fact 
that change in power and plant conditions is small one-time-step ahead. However, the prediction seems to 
have a bias, the cause of which is not entirely clear. While this may be the result of various trips/derates 
included in the data used for training, the specific impact of these transient conditions on the prediction 
performance should be better quantified. The performance under these conditions of other models also 
should be quantified to be able to draw broader conclusions about the ability to build accurate prognostic 
models that are capable of learning transient behavior. 
 

 

Figure 12. LSTM model performance for prediction of transient operations. The LSTM was trained to 
predict the gross load using previous measurements of process variables (flow, temperature, pressure) one 

time step into the future.  

3.3.2 Discussion 

While the assessment was not comprehensive, as it did not examine the effect of each parameter 
systematically, it did explore a large range within the parameter space, and the findings may be 
generalizable as a result. The results indicate that, as expected, the time required to train the models 
increases as the model complexity increases. However, the initialization of the LSTM and NAR 
parameters was also observed to influence the training time: initialization closer to an optimal solution 
tends to result in faster convergence. Also obvious from the training process was the fact that the actual 
training time depends on the data and the algorithm convergence parameters: loss function value at which 
to stop training, maximum number of epochs for training, mini-batch size, sequence length, etc.    
 
Under steady-state conditions, the accuracy of short-term predictions (1 hour – 1 day) tends to be high, 
with an RMSE less than about 1 and generally much lower, indicating that the underlying system is 
relatively stable over the short term. The accuracy degrades as the prediction horizon increases, with the 
predictions for one week out tending to be worse than those for one day out in most cases. Model 
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structure optimization is considered crucial to prediction performance optimization; however, the 
performance is also considered to be dependent on the prognosability from the input data.  
 
While the actual performance is a function of the model structure and the specific data used as input, the 
general performance degradation with increasing prediction horizon is not surprising, as other factors 
besides the data used in the prognostic model development influence the actual process variable values 
and the plant output. These factors include operational changes and degradation in other parts of the plant 
outside the FWCS that have an impact on plant generation and in turn affect the FWCS measurements, as 
well as the potential slow aging of the FWCS components.  
 
A specific example is when reduction in load demands may be accompanied by a set of condensate and 
condensate booster pumps being taken offline. The FWCS is one of many subsystems in a nuclear power 
plant. In the specific plant from which data was obtained for this study, many of the derates, trips, and 
other performance issues were not a result of the feedwater condensate system but were due to operational 
changes in other systems, operator control actions, periodic surveillance activities that resulted in a 
subsystem configuration change, or from external factors. To accurately determine if the component was 
taken offline due to maintenance or performance concerns, this component outage would need to be 
confirmed with operator performance logs. These results appear to indicate that the use of prognostic 
models for plant condition prediction are appropriate for short time horizons; predicting over longer time 
horizons is likely to require additional data from multiple systems that may be difficult to obtain and 
integrate.  
 
It is important to also differentiate between the performance obtained from a single model specifically 
trained to predict the output at a fixed time horizon (such as 1 day) and the performance obtained by using 
the output of a model trained to predict one hour in advance in an iterative fashion to achieve prediction 
by a day or more. In the latter case, prediction errors tend to accumulate as the model output is fed back to 
the input; the consequence is usually greater error in the predictions. In these instances, the prognostic 
models must be augmented with mechanisms that update the prediction as new measurements become 
available. This type of update has the consequence of calibrating the predictions and lowering the 
prediction error, at least temporarily. Potential mechanisms for updating predictions based on new 
measurements have been proposed in the literature [39] and include Kalman filters and particle filters 
[40]. In this report, such augmentation of the prognostic methods is being studied as part of the ongoing 
research. The results described earlier explicitly indicate which of the two cases was used in estimating 
the prediction accuracy.  
 
The model performance was found to be sensitive to normalization of the inputs, as well as to whether 
features—PCA in this instance—were used or not. However, the performance gains with PCA as a 
preprocessing tool were inconsistent across model types. It is also worth noting that there are several 
combinations possible for the inputs and outputs to the models, and to a great extent, the proper choice of 
which sensors to use as inputs (predictors) tended to be a matter of trial and error given this data set. 
Alternative metrics, such as the Akaike Information Criterion (AIC) or Bayesian Information Criterion 
(BIC), are necessary to quantify the information gain from a specific input (predictor) and objectively 
determine the subset of predictors that should be selected for prognostics.  
 
A key finding here for degradation prognostics is the need for data from the system under monitoring, as 
well as other associated data from the plant process that may impact performance of the system being 
monitored. A related issue is the selection of appropriate prognostic models. While machine learning 
models appear to be quite capable of prognosing the quantity of interest, relevant labeled data must to be 
available for training the models. Furthermore, the model structure (number of nodes, neural network 
connectivity, etc.) does not appear to have a monotonic relationship with the prediction accuracy, 
although there appears to be a monotonically increasing relationship between network size and 
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computational complexity, as in the time to train the network to reach an acceptable training error and the 
associated memory requirements. As such, the use of these models is expected to require some trial and 
error before an acceptable model structure and performance can be achieved.  
 
The expected increases in prediction errors as the prediction horizon is increased point toward the need to 
quantify the confidence associated with the prognostic result. This is a generalizable result to degradation 
prognostics and is an ongoing research effort, with further results to be documented in subsequent reports.  
 

4. SUMMARY AND PATH FORWARD 

Prognostic models for nuclear power plants are expected to enable data-driven insights into plant 
performance that can drive condition-based predictive maintenance scheduling. If properly applied, 
prognostic models are a key enabling technology, optimizing plant performance using the right type of 
data and information. Advances in machine learning and related data analysis methodologies have opened 
up opportunities for using operational data to derive prognostic models for assessing system state and 
detecting anomalies in equipment condition. A series of studies using three types of exemplar models and 
data from an operating plant indicates that the models can learn relatively quickly and may be used to 
predict the process measurement of interest over different time horizons. The prediction accuracy is 
dependent on the model structure and other factors, including the data used in the training process, with 
the accuracy degrading as the time horizon increases. Results indicate that the prediction accuracy tends 
to be highest when working with data from steady-state conditions; the use of data that includes transients 
challenges the ability of the model to predict the behavior during and sometimes after the transient as 
occurred. It is anticipated that this is due to the lack of sufficient data capturing the conditions before, 
during, and after the transient, as well as the fact that the available data from the FWCS does not appear 
to contribute to the various transient behaviors seen (derates, trips, ramp-down and start-up).  
 
The analysis to date indicates a need to curate and clean data sets for use in similar applications; a need 
for data covering equipment degradation or faults; and a need to quantify the prediction uncertainty. The 
ability to update prognostic models as relevant data become available is also a necessity. These questions 
are the subject of ongoing research in this project. 
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